Statistical (C,1) (E,1) summability and Korovkin’s theorem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Korovkin Second Theorem via B-Statistical A-Summability

and Applied Analysis 3 f continuous on R. We know that C(R) is a Banach space with norm 󵄩󵄩󵄩f 󵄩󵄩󵄩∞ := sup x∈R 󵄨󵄨󵄨f (x) 󵄨󵄨󵄨 , f ∈ C (R) . (12) We denote by C 2π (R) the space of all 2π-periodic functions f ∈ C(R) which is a Banach space with 󵄩󵄩󵄩f 󵄩󵄩󵄩2π = sup t∈R 󵄨󵄨󵄨f (t) 󵄨󵄨󵄨 . (13) The classical Korovkin first and second theorems statewhatfollows [15, 16]: Theorem I. Let (T n ) be a sequence of p...

متن کامل

On statistical A-summability

Let A = (ank)∞n,k=1 be an infinite matrix and x = (xk) ∞ k=1 a sequence of real or complex numbers. Then the A-transform of x is a sequence Ax = (An(x))where An(x) = ∑ ∞ k=1 ankxk provided that the series converges for each n; and the sequence x is said to be A-summable if Ax is convergent. In this paper we define statistical A-summability of x, that is, x is said to be statistically A-summable...

متن کامل

Some Inequalities on Statistical Summability

We prove some inequalities related to the concepts of C1(st) -conservative matrices, C1(st) lim sup and C1(st) lim inf which are natural analogues of (c, st ∩ l∞) -matrices, st lim sup and st lim inf respectively.

متن کامل

Statistical summability(C, 1) for sequences of fuzzy real numbers and a Tauberian theorem

Statistical convergence for sequences of fuzzy real numbers has been studied by various authors. In this paper we study the concept of statistical summability (C, 1) for fuzzy real numbers which for real numbers was introduced by Moricz [18]. We also construct some interesting examples. AMS Mathematical Subject Classification: 40A30, 40E05, 94D05

متن کامل

Generalized statistical summability of double sequences and Korovkin type approximation theorem

In this paper, we introduce the notion of statistical (λ, μ)-summability and find its relation with (λ, μ)-statistical convergence. We apply this new method to prove a Korovkin type approximation theorem for functions of two variables. Furthermore, we provide an example in support to show that our result is stronger than the previous ones.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2016

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil1602387a